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In a’process involving electromagnetic shaping, a high-frequency electromagnetic field 
is used to deform a liquid conductor into a required shape. This is particularly relevant 
to processes such as levitation melting. In this paper the stability of such configurations 
are investigated. The second variation of an appropriate energy functional is derived 
whose minimum states correspond to stable configurations, thus providing a stability 
criterion. As an example, this is applied to the shaping of a levitated cylinder of circular 
cross-section and to an almost spherical axisymmetric shape. In both cases we find that 
these shapes are unstable. We then consider enclosing the entire shaping device in a 
metal shield, thus preventing the escape of the magnetic field. It is then shown that in 
general the shield has a stabilizing effect, whose exact nature depends on the topology 
of the liquid shape and on the field structure on its surface. This differing behaviour is 
discussed for two-dimensional spherical and toroidal shapes. 

1. Introduction 
In the various processes involving liquid metals there arises the problem of 

controlling the equilibrium of the mass of metal or of its surface by a high-frequency 
oscillating magnetic field. The interest in electromagnetic shaping problems arises 
mainly in two areas : continuous casting and levitation melting. Continuous casting is 
a standard process in the metallurgical industry, and electromagnetic forces may be 
advantageously used to shape the vertically falling column before its outer layer 
solidifies. Experimental work in this field has been carried out in Grenoble (Etay 1980; 
Garnier & Etay 1982). In levitation melting, on the other hand, a piece of solid metal 
is placed in a basket of coils, which produce a high-frequency field sufficiently strong 
to levitate the sample. The eddy currents induced in the metal are usually strong 
enough to melt it. The resulting shape of the molten metal will then be determined by 
the shape of the applied field. This melting process was first suggested by Muck (1923) 
in a German patent, but it was some years later that the first experimental work was 
published by Okress et al. (1952). Many levitation devices were developed by Polonis 
(Polonis & Parr 1954). The main advantage of levitation melting over the conventional 
crucible melting is that the liquid metal does not come into contact with the crucible 
wall, thereby avoiding any undesired contamination. 

From a theoretical point of view, these two shaping problems are governed by the 
same equations, (1.2) and (1.3) below, and several studies have been carried out to 
determine the resulting liquid shape for a given external current distributionj,. This is 
usually referred to as the direct problem. 

In general, the direct problem can be solved either by considering equilibrium 
equations at the interface or by minimizing the appropriate energy functional 
introduced by Sneyd & Moffatt (1982), the main advantage of this method being that 
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the resulting shapes are then mechanically stable. Several problems have been studied 
using either of these methods. We mention the work done by Brancher & Sero 
Guillaume (1983), Brancher, Etay & Sero Guillaume (1983) for the shaping ofjets, and 
that of Mestel (1982), Sneyd & Moffatt (1982), Etay, Gagnoud & Garnier (1986) for 
the electromagnetic levitation. 

The inverse problem, on the other hand, consists of determining the exterior field, and 
therefore the external currents, for which the liquid metals takes on a given desired 
shape. In spite of the obvious importance of the inverse problem in the design of 
specific coil arrangements, not much work has been dedicated to it.  It was not until 
1989 that Henrot, Pierre & Brancher provided a constructive method to solve the 
inverse problem for two-dimensional configurations (with direct application to the 
shaping of jets), and this was extended to the three-dimensional case by the present 
author (Felici 1991). 

There now arises the question of whether these given shapes are stable. In this paper 
we investigate the mechanical stability of the liquid using the energy functional 
mentioned above. Sneyd & Moffatt (1982) derived its first variation and showed that 
its stationary ‘points’ correspond to equilibrium configurations. Here we shall pay 
some attention to the first variation of the magnetic term of this energy functional, not 
only to introduce the notation that we will need for the second variation, but also to 
emphasize a minor step in this evaluation which seems to have been overlooked by 
previous authors. This is probably because this observation is irrelevant for shapes 
with spherical topology, which is the case implicitly considered by previous authors, 
but becomes necessary when justifying this classical result for toroidal topologies. We 
then proceed to the main result in this paper, which is the evaluation of the general 
expression for the second variation near an equilibrium configuration (equation (3.9)). 
See also Sero-Guillaume (1983) for an analogous evaluation for ferromagnetic 
materials. This configuration will then be stable if this expression is strictly positive for 
all perturbations of the domain. After using this result to show the instability of some 
simple shapes, we investigate the effect of enclosing the whole system in a metal shield, 
which would then prevent the magnetic field from escaping. It turns out that the shield 
has a general stabilizing effect, whose exact nature depends on the topology of the 
liquid shape and on the field structure on its surface. We discuss the implications for 
various configurations. 

Throughout this analysis we will consider both spherical and toroidal topologies ; 
however, the results hold also in two dimensions, providing the currents induced in the 
liquid remain constant under variations of the shape. Finally, we assume that the 
external applied currents remain unchanged under perturbations of the liquid shape; 
this can be achieved in practice if there is a large impedance between the generator and 
the induction coils. 

I .  1. Background theory and basic assumptions 
When a metal is placed in a single-phase field Re (2/2 B(x) eiWt), where B is its time 
r.m.s. value, eddy currents are induced which on interaction with the field produce a 
Lorentz force in the metal. The penetration of the field into the metal is governed by 
the induction equation : 

i d ?  = V A (u A B)+hV2B, 

where u is the fluid velocity and h the magnetic diffusivity. By increasing the frequency 
while keeping the field scale fixed, and assuming we can neglect the velocity term 
(meaning that the magnetic Reynolds number R, = U, L /h  g 1, L being the length 
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FIGURE 1. Definition of the problem 

scale of the liquid shape), the induction equation leads to an exponential decay of the 
field : 

where x is the normal coordinate into the liquid domain and 6, = ( ~ A / W ) ' / ~  is the skin 
depth. Hence for sufficiently high frequencies the penetration of the field into the metal 
becomes negligible. In this limit the field exerts an inward normal (time-averaged) 
surface pressure pm = B2/2pu, on the fluid. 

The consistency of this approximation was verified by Mestel (1982) who showed 
that an upper estimate of the terminal fluid velocity is given by 

B - exp E - x/S,I, 

(v being the viscosity). This not only justifies the initial assumption that R ,  + 0 with a,, 
but also shows that the inertia 
magnetic pressure pm. Hence in 
liquid surface is given by 

of the fluid becomes negligible compared with the 
this limit the boundary condition on the stationary 

B2 
-+pgz+yc = P,  
2P0 

where P is  a constant and represents the jump in the modified pressure across the liquid 
boundary, y is surface tension and C the mean curvature on the liquid surface. The 
r.m.s. field B is determined by the magnetostatic problem: 

V A B = , u o j o , U . B = Q  in Q,, ( 1 . 3 ~ )  
B . n = O  on r, (1.3b) 

where r is the liquid surface, 52, the region exterior to the metal, andj,  the r.m.s. of 
the external current distribution, assumed located in a system of inductor coils 
(figure 1). 

It should be noted however that (1.1) assumes a small Reynolds number. In practice 
this may not the case for realistic parameter values: the Reynolds number: 
Re = U o L / v  - p,S, L / p v 2  can be estimated from the requirement that the total 
magnetic levitating force (- p ,  L2) sustaining the liquid metal must balance at least the 
weight (- pL3g),  so that p ,  > pLg .  Hence Re 2 6 ,  L2g/v2. For realistic physical 
situations, with L - 10 mm 6, - 1 mm, v N m2 s-l, we find that Re - lo6!  This 
flow is of course impossible and is partly due to the overestimate of (1.1) which assumes 
a steady laminar flow. But even so we must assume that the flow is turbulent for these 
typical parameter values. Then it is the Reynolds stresses that govern the flow in the 
boundary layer rather than the viscous stresses. In this case (1.1) is replaced by 
U ,  - (gL)l12 (Sneyd & Moffatt 1982), which gives the more reasonable value 
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Re - 3000. Unfortunately this implies that the dynamic pressure becomes of the 
same order as the electromagnetic pressure, thus invalidating the assumption that the 
internal fluid motion does not influence the shape of the liquid. 

In spite of these observations we will neglect the internal fluid motion in all of our 
analysis. Although this is not always justified in practice, it can still provide us with an 
insight into the stability behaviour of these levitation devices. 

2. The energy functional and its first variation 
If we assume that the applied external currents remain constant under variations of 

the liquid domain Q then the appropriate ‘energy’ functional of our system is given by 
Sneyd & Moffatt (1982): 

= Em@) + E,(Q) + E,(Q). (2.1) 

(Brancher 1980 also used E(Q) in the analogous context of ferromagnetic liquids. See 
also Brancher & Sero-Guillaume 1983). Note the appearance of the minus sign in front 
of the magnetic contribution. This is accounted for by the fact that work is done in the 
external circuits to maintain currents of constant amplitude. 

The first variation is a well known result: 

2.1. The first variation of the magnetic term 
In this section we will re-derive the variation of the magnetic term Em, paying attention 
to spherical, two-dimensional and toroidal topologies for the liquid shape. 

Following Sero Guillaume’s approach, this can be derived by deforming the domain 
s2 by a transformation on R3 depending on a parameter c :  

x, = T,(.%>, 
where 7; = I  (the identity) at e = 0 and T, is differentiable around e = 0. The 
transformation is a flow field in R3, so that the points in R3 can be thought of as fluid 
particles moving as the ‘time’ parameter e varies, thereby deforming the boundary r. 
The ‘rate of flow’ of these points is given by 

where x, are coordinates of the point x,, transported under T,. Hence 7,(x3 is just the 
Eulerian velocity field of the points in R3. 

The variation SE of E with respect to T, is then simply the derivative of E( T,(Q)) with 
respect to e at e = 0. The analogy with Eulerian kinematics is now complete, so to 
derive the magnetic contribution we use the classical formula for the total derivative : 

(2.3) 8 1  a, ;BzdV= j Qe [B.DB+$lzv.r]dV. 

where 
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Support of T; 

5 

FIGURE 2 .  Deformation of the external domain 0, by T .  

the familiar transported derivative. The variation SB is given by 

6B DB-(r*V)B.  (2.4) 

Which is the change of B due only to the deformation of the liquid domain 

note that the above indirect definition (2.4) of 6B avoids problems caused by B, not 
being well defined at E = 0, since Bis discontinuous across the moving liquid boundary. 
From (2.5) it is obvious that 6 commutes with the derivative operator: 

aSB aB 
- = S -  

(the same is of course not true for the operator D ) .  This definition of the operator S 
is analogously extended to any domain-dependent function. Using (2.4) and (2.3) and 
integrating by parts, we obtain 

axi ax% 

1 
SE, = - +B2 7 - n  d S  - - Be SB d V,  

PQ ’i r-s, Po 

where S ,  is an ‘outer’ surface at infinity (note that n is the outward normal). 
At this point we note that the transformation T, also deforms the external domain 

Q,. Without loss of generality we only consider transformations which reduce to the 
identity everywhere in Q,, except in a neighbourhood of the liquid surface excluding 
the surrounding inductors (figure 2). The contribution of the ‘outer’ surfaces S, 
therefore vanishes because 7 vanishes at a finite distance from 52. 

The second term also vanishes, but the argument differs slightly for different 
topologies. We first observe that in a,, V A SB = S(V A B) = po Sj, = 0, as we assume 
that the applied currents remain constant in time. Hence 6B = V p  for some function 
q. Here we must distinguish between different topologies. 

The simplest case is if r has spherical topology. Then q will always be single valued, 
since we have SB- dl = 0 for any loop in 52,. Hence the second term is 

S,,, 9B.n ds 
B* SBd V = B. UqdV = 1% Joe 

on integration by parts (S, is a surface at infinity). But B - n  = 0 on I‘, so this integral 
vanishes. The contribution at infinity vanishes since B (and SB) has a dipole behaviour 
at large distances. 
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FIGURE 3. The surface of discontinuity A for the field potential, chosen as spanning the surface 
curve c. The adjacent curve c' runs just inside the liquid shape Q. 

In the two-dimensional on the other hand, the potential cp will generally be 
multivalued, since it presents a discontinuity equal to $,SB.dl= ,uLo $1, (where y is any 
loop surrounding the liquid shape). Hence in order for the above analysis to apply we 
must assume that the total current I,,fiowing in 0 remains constant as 0 varies (i.e. 
$1, = 0). Some examples in which this can occur will be given later. 

We would think that the same condition should apply to toroidal shapes, since in 
general the total induced current I ,  flowing in the torus also varies under surface 
variations. However this condition turns out to be redundant: the potential q will 
generally present a surface of discontinuity A in LIP, chosen as spanning a curve c on 
T (figure 3), over which jumps by the quantity $, SB. dl = ,uo SZ,. Hence on in- 
tegration by parts we therefore end up with the additional term ,uo SZ,J,, B. n,, dS, n,, 
being the normal to A .  However this integral turns out to be zero because of the 
induction equation: 

iwB=-V A E. 

In fact, on integration over a surface A' spanning the curve c' running just inside the 
liquid domain 52, we obtain 

B.n,,dS = - E.dE = 0 I,. 
since E is zero inside 52 (see the Appendix for details). 

But the field B remains bounded on r, so that the surface integral varies 
continuously as c' crosses the boundary r. We therefore must have the consistency 
condition : 

We conclude that the term ssd, B. SBd V in the expression 
except in two dimensions, unless the current flowing 
constant under shape variations, so that 

for SE, vanishes in all cases, 
through the shape remains 

2.2. The variational principle 

Consider variations of E (2.1) under deformations preserving the volume 1521 of 52, 
implying that r must satisfy 

(2.8) 
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The equilibrium equation (1.2) is then recovered by the variational statement: 

SE- PSI01 = 0 for any 7, 

7 

where P appears as a Lagrange multiplier for the constraint (2.8) on the deformation 
field. Therefore the domain i2 satisfying the equilibrium boundary condition is also a 
stationary 'point' for the energy E in the space of all volume-preserving deformations. 

3. Stability and the second variation of the energy 
3.1. The second variation 

The stable solutions correspond to the domains 0 for which E is a minimum. Let 0 
be such a stationary domain. Then for any deformation T :  

E( q(0)) = E(4) ++e2S2E(0) + . . . with 8" = d'L/dcnlc=O. 

The functional E will then be at a minimum if S2E(i2) is strictly positive for all 
deformations preserving the volume of 0. (Note that if S2E(0) is zero for any particular 
deformation T we would then have a look at higher derivatives of E in order to examine 
the nature of this stationary point.) 

One could ask if this is a sufficient condition for stability, that is all stationary 
domains with non-minimal E correspond to unstable configurations, as one could 
envisage Arnold type stabilities corresponding to a maximum energy. However, these 
situations are probably ruled out by dissipation due to viscous effects, which lead to a 
uniform decrease in the total energy whenever the system is in movement, which should 
therefore tend to relax to a state with lower E. 

In order to compute S2E(0) we must recover the expression for dE/ds. This is 
simply done because (2.2) is in fact the general expression for the rate of change of E. 
After re-introducing the E dependence in (2.2), differentiating and setting c to zero we 
obtain 

with 

J stands for J,(x,), the surface Jacobian resulting from the variation of the surface 
coordinates, and following our conventions we have J,(xo) = 1. Since we only require 
P E  for an equilibrium configuration, we can use the stationary condition (1.2) to 
rewrite the second term : 

/rFD[r.nJ]dS = P D[r-nJ]dS. 

However we are only considering perturbations preserving the volume 101 of the liquid, 
so that S"1QI = 0 for all n. Hence by differentiating (2.8) using the same procedure we 
obtain 

S210( = D[r.nJ]dS = 0. 

So the second term in S2E vanishes. Hence for an equilibrium configuration we are left 
with 

6 - D F r - n d S  with DF=D-++DC+pgDz. 

s, 

s, 
(3.1) 

B2 

2E - S, 2Po 
SF is just the change in the total pressure due to the surface deformation. 



8 T. P .  Felici 

3.2. Evaluation of D iB2 
From now on we will assume that the surface r is smooth, so that B will be smooth 
right up to y .  Hence we can write 

D i B 2  = .s .ViB2+SiB2 on I'. 

In the calculations that follow, we will simplify the expressions by using the 
components parallel and perpendicular to I'. We will also take the normal n as being 
the function defined in an open neighbourhood in R3 of r by 

n = V ! P / l V ~ ,  

where IV(x,l, x2, 2) = 0 is a local representation of r. For example we can choose !P 
so that n is the outward normal. Now let d be defined by 

d = V - n ( n . V ) ,  

so that n - d  = 0. Note that d is defined in the same open n.h.d. in R3 as n, and on I', 
d is just the surface derivative V s .  Hence on r 

where 7 t ,  r ,  are respectively the tangential and normal components of r.  Note that only 
normal displacements really need to be considered, as rt does not deform the liquid 
surface. We will therefore neglect 7t in what follows. The scrupulous reader may wish 
to verify that the rt terms would have in any case disappeared in the calculations. 

We can rewrite the second term using the fact that B is irrotational in a one-sided 
neighbourhood of r, so that the Cartesian components of B satisfy 

ajB" = ai Bj where ai = a/axj. 

Hence on r we have since Fai = Bidi, 

= Bidi(n B) - BiBjdi nj. 

The first term vanishes since n .  B = 0 and the tensor dn is simply the second 
fundamental form n, so 

(3 .2)  
where K~ is the normal surface curvature along the field line B. Note that K~ is always 
positive for convex surfaces, as we take n as being the outward normal. Hence on 
substitution we obtain 

Note that the first term is the contribution arising from the change in the field on the 
surface due only to surface displacements, while the second one arises from the field 
deformation. We will discuss the effect of each term later in 53.5. 

BiBfdi ni 3 n(B,  B) = K,(B(~,  

DiB2  = -r ,KB)B12+B.SB.  (3.3) 

3 . 3 .  Equations for 6 B  
We now show that the equations satisfied by SB are 

V - S B = W  A S B = O  in O,, 
n . S B = V S - ( 7 , B )  on r. 

( 3 . 4 4  

(3.4b)  
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Equations ( 3 . 4 ~ )  are immediately obtained from (1.3 a) by the commutativity of S and 
V ,  and the assumption that the external currents remain constant, so that S j  = 0. 
Equation (3.4b) follows from the fact that n .  B remains zero on the moving boundary: 

D(n. B) = 0.  
This implies that 

0 = Dn.B+n.DB 

= Dn.B+n.(t .V)B+n.SB. 

so  n.SB = -Dn.B-r,n.aB/dn. 

Rewrite the last term using the identity 

0 = V . B =  V,.B+n.aB/an, 

where 0, - B is the surface divergence of B: 

n.SB = -B.Dn+r,V,.B. 

Now we know that, for normal displacements, 

Dn = - V s r ,  

(see the Appendix for proof). Hence 

n.6B = B.V,r,+r,,V,.B= V,-(r,B).  

Finally note that for spherical topologies, SB = V q  for a single-valued q. These 
equations then become 

V 2 q  = 0 in O,, ( 3 . 5 4  

bounded at infinity. ( 3 . 5 4  

aq/an = V ,  - (7, B) on r, (3.5b) 

These equations also apply to two-dimensional shapes for which the total current 
through the cross-section remains unchanged : 61, = 0. 

3.4. Evaluation of S2E 
We know (see the Appendix) that in the case of normal displacements (rt = 0) the 
variation of C (defined here as the sum of the principal curvatures, and not of their 
average) is given by 

where Vi = didi is the surface Laplacian (Beltrami) operator and 

DC = - (v: T,+ (3.6) 

= Kf -k K i ,  

K ~ ,  K~ being the principal curvatures. We also have 

Dz = t - V z  = 7 , f . n .  (3.7) 

Substituting (3.3),  (3.6), (3.7) into DF given in (3 .1)  we obtain 
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Therefore substituting (3.8) into (3.1) and noting that 

(the first term vanishes by integration by parts, since r is a closed surface) we obtain 

6'E = jr[  -- K ~ T ~ / B ( ~  + -7 ,  B.dB+ y(lV, r,I2 - cc2r2,) + pg?.n~t]dS, (3.9) 

where B satisfies the equilibrium equation (1.2) and 6B is the solution of (3.4). We can 
write 

6'E = 62Em+62Ey+S2Eg, 

1 1 

P o  Pn 

with ( 3 . 1 0 ~ )  

6'Ey = y ( J V , T , ) ~ - C Y ~ ~ ; J ~ S ;  S2E, = pg i!.nridS, (3.10b, c) 
Jr Jr 

which are respectively the magnetic, surface tension and gravitational energy 
contributions. Finally remember that r ,  must satisfy the volume-preserving condition : 
J r 7 ,  d S  = 0. 

3.5. Discussion of the magnetic term 
The second term in #Em ( 3 . 1 0 ~ ) :  

is the contribution due purely to the change in the magnetic field surrounding the 
liquid, because 

S , T ~ B . ~ B ~ S  = (6B(2dV. (3.11) i,. 
In fact, for spherical and two-dimensional topologies 

r r 

= ~r~v, - (7 ,By. ) -~~s . (7 ,B)JdS~ 

The first term vanishes by integration, since r is a closed surface. So using (3.46) 

which using the divergence theorem, 

= )cYB)~ d I/ 

Note in particular that this term is always positive, and therefore has a stabilizing eflect. 
Physically this term is the contribution arising from the repelling effect due to the 
compression of the magnetic field. We therefore refer to (3.11) as the compression term. 
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FIGURE 4. The integrand of the curvature term will be destabilizing in convex regions of the liquid 
surface (where K~ > 0), and stabilizing in concave regions (where K~ < 0). 

The expression (3.1 1) is also true for toroidal shapes, although the following extra 
terms appear when integrating by parts, owing to the jump in q ~ :  

a,,j,aB.n,dS+sr,j~~.n,T. dl 

(where A is the surface in figure 3). But this is just 

SITS B .  n, d S  1, 
so this integral vanishes using (2.6). 

On the other hand, the first term in S2Em ( 3 . 1 0 ~ ) :  

(we will call this the curvature term) is the contribution arising from the change in the 
field on the surface due only to surface displacements (and not the field deformation), 
as the integrand is just T; (a /an )  illz (see §3.2), where T,(c?/c?n) ;B2 corresponds to the 
change in the magnetic pressure along the virtual displacement 7,. The integrand is 
therefore positive if the magnetic field increases away from the surface, having the 
physical interpretation that an increase in the magnetic pressure under a positive 
virtual displacement provides a stabilizing restoring force. 

The sign of the integrand is given by K ~ ,  the normal curvature along a surface field 
line. An interesting geometrical interpretation can be derived from the behaviour of 
this term : if Is1 is the length of any infinitesimal segment on the surface, then its change 
due to a normal surface deformation is given by K,(s(T,  where K, is the normal curvature 
along s. Hence the integrand is negative if the surface field lines are stretched for 
positive (i.e. outer) 7,. This of course corresponds to regions in which the magnetic field 
decreases away from the surface, since c?(BJ/c?n = -K~IBI .  Note that in any case the 
integrand is always negative in any convex region on the surface (figure 4), whatever 
the shape of the surface field. In particular the curvature term will always be negative 
(and therefore destabilizing) for  totally convex surfaces, such as the sphere or any 
slightly perturbed sphere (or the circle in the two-dimensional case). 

Therefore for stability, the (possibly negative) curvature term must be outweighed by 
the (positive) compression term. The above observation indicates that the ‘ negative 
influence’ of the curvature term is attenuated for shapes with concave regions, such as 
the cruciform shapes calculated by Shercliff (198 l), or the ‘upside-down pair shapes’ 
so familiar in axisymmetric levitation devices, both of which are known to be stable: 
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here the curvature term is ' sufficiently non-negative ' to be outweighed by the positive 
compression term. 

Finally note that only the compression term depends on the surface derivative of 7,. 

In fact the magnitude of SB is determined by its boundary condition (3.46) which can 
be rewritten as 

n-SB = B-V,T,$~,V;B. 

This indicates that the compression term becomes relatively large for perturbations 
which are sufficiently 'rippled' in the direction of the field on the surface (i.e. for large 
B .  V, 7,). We therefore recover the familiar result that the magnetic field stabilizes 
high-frequency disturbances along the field lines. 

In conclusion, the above observations indicate that the least-stable configurations 
arise with totally convex surfaces, particularly when subjected to ' low-frequency ' 
deformations. This observation is confirmed in the examples below. 

4. An example in two dimensions 
We will now analyse the stability of a horizontally levitated cylinder with uniform 

circular cross-section (figure 5). We assume that a current distribution necessary for 
obtaining this shape has been determined in a set of coils surrounding the liquid in the 
form of a concentric cylinder. This is done by solving the associated inverse problem. 
We will not dwell on the details of this calculation, as these currents do not appear in 
the expression (3.9) for S2E (for the solution to this inverse problem refer to Felici 
1991), but it is necessary to emphasize that this stability analysis is valid for the two- 
dimensional case only if the total current induced in the liquid remains constant as the 
shape varies. This can be achieved if, for example, the liquid cylinder is somehow 
connected at the endpoints with the external coils (via a three-dimensional circuit), 
thereby forcing the total induced current I, to be equal to the total current in the wires 
I,, also constant if we assume a large impedance between the coils and the generator. 

A more realistic situation would be to consider the cylinder as being a section of a 
torus with a radius R, large compared to its cross-section. In this case condition (2.6) 
reduces to 

0 = B.n,dS s, - (I,-+ I,) R, In R, 
to leading order as R,+m (see the Appendix). Hence in this limit we must have 
Zr = - Is  (this is a generalization of Sneyd & Moffatt's result who showed the equality 
for circular cross-sections by considering the mutual induction of two circles). 

Finally we notice that these shapes might be subject to longitudinal instabilities, 
which are excluded from this analysis. We will discuss these later. 

Under these assumptions, we will calculate S"E for rigid (cross-sectional) 
displacements, and show that this is an unstable configuration. See Descloux (199 1) for 
an analogous result for any two-dimensional configuration, but in the absence of 
gravity and surface tension. For rigid displacements, S2E, and SzEg both vanish so the 
only contribution left is the magnetic term. In the two-dimensional case the surface will 
only have one radius of curvature C and the surface derivative operator Vs reduces to 
d/ds (s is the line distance on 0. Hence (3.9) becomes 
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Current-carrying wires 

FIGURE 5. Levitation of horizontal liquid metal cylinder of circular cross-section using current 
inductors suitably distributed around an external concentric cylinder. 

where s is the distance element on I‘. The second (compression) term has been rewritten 
using the potential function q defined in (3.5). Rigid displacements of a circle are given 
in polar coordinates by 

r ,  = h, sin 8+ h,cos 8 ;  

h,,, h, are constants which denote respectively the vertical and horizontal displacements. 
From the equilibrium equation (1.2) 

BI, = @o/3)’i2(1 -asin8)1’2 with /3 = 2 P-- , a = pgR P-- , 

where R is the radius of the liquid shape. As the curvature is constant (C = 1/R) the 
first term in S2E integrates to 

The second (compression) term can be rewritten as 

( :I ( : ) l  

- /3n(hi + h;). 

where G(B) = (1 -a  sin 8)l/’ (h ,  sin 8 + h, cos B), and the function s is defined by 
p(rR,  8) = (,~,/3)’~~ s(r,  8) on the rescaled domain r > 1, so that from (3.5) 

As= 0 for r >  1, (4.1 a )  

on r =  1, 
3s - dG 
c?r d8 
- _ -  (4.1 b) 

6 bounded at infinity. (4.1 c) 

We can solve (4.1) by expressing G in its Fourier series form : 
30 

G = Go + C (G, eins + G, eino). 

Substituting the result in the above integral and integrating term by term we obtain 

1 

cz 

J2E = - /3n(hi + h,2) + 4xpht n(G,I2. 
1 

We now make the simplifying assumption that the surface magnetic pressure is large 
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compared with the gravitational pressure, so that we can take a( = pgR/T’) < 1. This 
assumption is valid if the total applied current I s  is strong enough, because 

Then 

so that to this order 

G = (1 - sin 0 - $2 sin’ 0) (h?, sin B + h, cos 0) + O(a3) 

Substituting in (4.2) the relevant terms we finally obtain 

Itpa2 S2E = ---(h;-ht)+ .. 
16 

The circular shape is therefore unstable under vertical displacements and stable under 
horizontal displacements. 

This result remained unchanged even when dropping the assumption of small a. In 
this case the G,, had to evaluated numerically and the series (4.2) truncated for 
sufficiently large n. We therefore conclude that this shape is unstable regardless of our 
choice of inductor currents necessary for forming this shape. 

5. An example in three dimensions 

analysis possible. We assume that r is given in spherical polars (Y, 0, q5) by 
We now consider an almost spherical axisymmetric drop, thus making a perturbation 

u,(H) = R(1+ E V  (COS H ) ) ,  

where ~ ( x )  is any analytic function in the range x E [ - 1, I], and is chosen in such a way 
that r is an admissible surface (i.e. surfaces that can be formed, for which therefore 
(1.2) admits a surface field B). 

The field lines of B lie along the lines of symmetry, and the magnitude is given by 
the equilibrium equation (1.2), which to leading order becomes 

R’ *. 
Y 

--+pgR[ 1 +&)I  (COS B)] cos O+L( 1 - cC‘ (COS 8)) = P, 
2P” R 

with c =-  (1-x2)- + 2 7 ;  x = c o s 0 ,  
‘ dx [ ’ :‘:I 

where we have used (3.6) to write the perturbation C for C. We rewrite the above 
equation in the non-dimensional form 

b2 + wql+ €V (cos H)] cos H - a e  (cos 0) = P. 

where b = (R/2p0 y)’”B, W = pgR’/y, and where we have incorporated all constant 
terms in the (rescaled) constant P. The latter is determined by the requirements that the 
field must vanish at the poles H = 0, 7c. These two conditions also provide a restriction 
on the possible surfaces, since we must have 

P =  W[1+€~(l)]- tC‘( l )  = - J q l + q ( - I ) ] - € C ( - l ) .  
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FIGURE 6. An axisymmetric levitation configuration with almost spherical liquid shape. 

We deduce that the non-dimensional constant Wmust be of order e. Therefore quasi- 
spherical surfaces can only be formed if the liquid drop is sufficiently small, so as to let 
surface tension become dominant over the weight of the drop. For aluminium, for 
example, taking t: = 0.1 as a typically small value, we have that R "N 2 mm! Moreover, 
the underlying assumption (among others) that the electromagnetic skin depth remains 
negligible (SJR  4 1) becomes tenuous. The perturbation analysis therefore applies to 
these relatively unrealistic cases, but it nevertheless gives an indication of the stability 
for more general shapes. 

To leading order in E we therefore have 

b2 = P-  C' (COS 8) - W' cos 8, (5.1) 

(5.2) 

with W = e W' (hence W = O(1)) and 

P = +[C'(l>+C( - l)]; w = f[C(l)-C( - 1)) 

This value for P and the relation between the curvatures and W' ensure that b vanishes 
at the poles. For example, let us consider 

(5.3) 

where P2, P3 are Legendre polynomials. Note that P2 has a symmetric squashing effect 
while P3 squashes the bottom more than the top (figure 6): if a = 0 then, to order e, the 
surface r is an ellipsoid. The calculation of b is simplified by the fact that the Legendre 
polynomials are eigenfunctions of C' : 

7 = Pn(cos8)*C' =f(n-l)(n+2)Pn(cos0).  

9 (cos 8) = P2 (cos 0) - 1 - aP, (cos O), 

For r to be admissible, a must be related to W' by (5.2), which gives W' = 5a. 
From (5.1) we get 

b2 = 3(1 -a!cos8)sin28 with a! = Fa = OW'. (5.4) 

Note further that since b(8) must be non-negative, we also require a! < 1.  
Let us calculate S2E for rigid displacements. In this case the only non-zero 

contribution is #Em. Now to leading order in e, S2Em reduces to an integral over the 
sphere : 

where again we have used (3.5) to rewrite the compression term. To leading order the 
boundary condition (3.5b) can also be taken on the sphere, so that 
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aF 1 d(sinOr,b) 
- = Y(8, q5) 5 ~ 

ar RsinB d8 

(we have taken b instead of B, so that q5 is conveniently rescaled). For general rigid 
displacements, we may set 

7, = q ( 8 ,  $1 h, - ( Y:(@3 $1 - Yy1(8, 4)) (5.7) 

where the c ( 8 ,  q5) are the complex spherical harmonics: 

and h,, hr are constants which denote respectively the vertical and horizontal 
displacements. Using expression (5.4) for b2 and our choice for r,, the first term in (5.5) 
(the curvature term) integrates to 

To evaluate the compression term we must solve (3.5). To leading order we can express 
the solution Q) in terms of spherical harmonics. By injecting this series solution into the 
compression term and integrating term by term we obtain the series 

- 24h2 - 5h2 
5 r 5 v '  

(all cross-terms vanish due to the orthogonality of the spherical harmonics) where the 
$k,j are the harmonic coefficients of the right-hand side of (5.6): 

$k,f = 1 Yi(O,q5) Y(O,q5)sinOdOd$. 
27, ____ 

o=o @ = O  

It is easily verified that Y has the form 

Y(O,q5) = F(8) h, + G(8) cos $h,, 

so that the only non-zero coefficients will be those withj  = 0 , l .  These have the form 

$ k , o  = F,(a)hu, ~ k , l  = Gda)hr. 

Hence summing the surface and compression terms we obtain PE,, in the form 

PE,, = M J a )  hi + M,(a) h:, 

The sign of S2Em therefore depends on the functions M,, Mr.  For a 4 1, which gives 
almost ellipsoidal shapes, we can expand (5.4) : 

b = ~ / ' 3 ( 1 - ~ c o s 8 a + ~ c o s 2 8 a 2 +  ...) sin8. 

To this order the $k,j vanish for k greater than 4, so that Mu, M ,  can be calculated 
explicitly. These gruelling calculations were done automatically using MAPLE, a formal 
calculus computer package, which gave 

6'E,, = g(hE - h:) + (&h; +% h;) + . . . . 
So it seems that these shapes are unstable under horizontal displacements and stable under 
vertical displacements. 
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FIGURE 7. Graphs of Mt,(cc), M,(cc) for the feasible range of a. As PE,  = M,.(cc) hi + M J a )  hf ,  
these show that this shape is unstable under rigid horizontal displacements. 

Dropping the assumption of small a we can still integrate the ykk,i explicitly, even if 
the resulting expressions are rather big (again, done using MAPLE). We find that for 
k = 5 the values of &(a), G,(a) are already as small as 0.001. We can therefore safely 
truncate the series at k = 5 thus obtaining an approximation to O(10-6). We will not 
rewrite the resulting truncated expressions for M,, M ,  as they would fill an entire page 
at least! We have however plotted these functions for the feasible range [0,1] of a 
(figure 7). A glance at these graphs tells us that the signs of M,, M ,  remain unchanged. 
We therefore conclude that this class of shapes must be unstable. 

The following observations can be made: 
(i) It is interesting to note that rigid displacements have the opposite effect in the 

above two- and three-dimensional examples: here h, is stabilizing while it is 
destabilizing for the two-dimensional example (vice versa for h,). This difference must 
be somehow related to the different dimensions of the two problems. 

(ii) We have implicitly assumed in our calculation of Em that the surface magnetic 
field is axisymmetric. In this case the equilibrium equation (1.2) yields a unique analytic 
solution (up to a sign), as the pressure constant P is fixed by the condition that B must 
vanish at least one point on the surface (at the poles in our example). However (1.2) 
only depends on the modulus of B. Hence, unlike in the previous two-dimensional 
example, even if P is uniquely determined one could still ask if there exist other (non- 
axisymmetric) fields satisfying (1.2). These could then give a different and possibly 
positive PE,. However this cannot be done since, as shown by Felici & Brancher 
(1991a), there must be at most one solution to (1.2) for any shape with spherical 
topology (the same is not true for the torus)! 

6. Stabilizing effect of an outer conducting shield 
If we find that a given shape is unstable we might try to stabilize it by varying the 

position of the inductors. However, the applied current distribution j does not appear 
explicitly in PE,  and so it will only affect S2E in so far as it changes the magnetic field 
on the liquid surface. In fact the same liquid shape can be formed, at least in principle, 
by a current distribution which generates a different surface field, but which still 
satisfies the equilibrium equation (1.2). We would therefore hope in this way to 
determine a current distribution in the induction coils (done by solving the inverse 
problem) which renders S2E positive. 

This possibility is therefore tied to (1.2) admitting multiple solutions for the surface 



18 T. P. Felici 

FIGURE 8. The presence of a metal shield has the effect of containing 
the generated magnetic field within itself. 

field. This point was developed in Felici (1991) (see also Felici & Brancher 1991a), 
showing that the number of solutions to (1.2) depends on the topology of the liquid 
shape. In particular, as mentioned in the previous section, spherical shapes admit at 
most one solution, thus making it impossible to stabilize an unstable shape in this 
manner. On the other hand, tori allow multiple solutions, although the first example 
shows that it may not be possible to stabilize these shapes just by varying the levitating 
field. 

Professor H. K. Moffat (personal communication) has suggested that for cylindrical 
configurations a stabilizing effect might be achieved on cross-sectional displacements 
by enclosing both the liquid and the current-carrying coils in a metal shield (figure 8). 
Such a shield would prevent the magnetic field from escaping, so that the subsequent 
flux compression induced by any fluid movement would presumably discourage the 
liquid surface from approaching this shield. 

We now investigate the stabilizing effect of such a shield for the different topologies 
considered up to now (two-dimensional, spherical and toroidal). We show that the 
shield does indeed have a stabilizing effect not only on two-dimensional configurations 
(which seems plausible), but also for more general shapes. 

The addition of this shield has the effect of increasing the compression term in S2Em, 
while all the other terms in S2E remain unchanged as they do not depend on the exterior 
domain. In the presence of such a shield (3.11) remains the same (the calculations 
leading to this being virtually the same), except that now Qe is the region between the 
liquid surface r and the shield Q. Also, in the case of a torus, the shield introduces a 
new toroidal discontinuity in the field potential with magnitude IQ,,,,, which is, as the 
name suggests, the total current spiralling round the shield. This leads to more terms 
appearing in the evaluation of (3.11). Again, these fortunately cancel out using the 
variation (as Tmoves) of the second consistency condition (again, appearing due to the 
presence of the shield): I,, B-n,, d S  = 0 (6.1) 

where A1 is any surface spanning the cross-section between r and Q (figure 9). The 
derivation of (6.1) is the same as for the first consistency condition (2.4). 

Let us consider how the compression term varies as we change the shape of the 
shield. Let y be an infinitesimal deformation of Q ;  then 

u.SyudV-Su?Ly,dS, (6.2) 
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FIGURE 9. The surface of discontinuity A1. 

where for simplicity we have set v = SB, yn = y - n ,  and to avoid confusion with the 
variations of the liquid surface, the suffix y denotes the variations induced by y. Note 
that we take n as being the inward normal on Q, hence the minus sign. Equations (3.4) 
for SB are still the same, except that the extra condition n .B  = 0 is added as B does 
not penetrate Q. Since Q remains fixed as the liquid moves, we have 0 = D(n.B) = 
n.SB on Q. Hence (3.4) becomes 

V . v = V  A v = O  in 52,. 

n.v=V;(r,B) on T, 
n.v=O on Q. 

(6.3 a )  

(6.3 b) 

(6.3 c )  

The equations for S,v are derived from (6.3) in a similar manner: 

V - S , , v = V  A S, ,v=O in Qe, (6.4a) 

n.S,,v=O on r, (6.4b) 

n.S,,v = V,-(y,, v) on Q. ( 6 . 4 ~ )  

The derivation of ( 6 . 4 ~ )  is the same as for (3.4b) since v is tangent to Q. On the other 
hand (6.46) is derived by the requirement to keep the field on the surface independent 
of the position of the shield. This is necessary as we intend to analyse the stability for 
a given predefined shape, which entails finding the corresponding levitating currents 
(done by solving the inverse problem) which will of course vary with the position of the 
shield. 

If T is  spherical or two-dimensional, we have that v = V#, so by integration by parts 
and using (6.4a): 

V.($S,v)dS = - Qn.S,vdS s,,, 
using ( 6 . 4 ~ ) ;  

integrating by parts on Q. Hence substituting the above result in the first term of (6.2) 
and summing the two we have the result : 

This equation also applies to toroidal shapes: as in the derivation of (3.1 l ) ,  extra terms 
appear when integrating by parts owing to the discontinuities in cp. But these cancel out 
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FIGURE 10. Diagram illustrating the ‘pill box’ argument on the surface field. 

using the variation (as Q moves) of the consistency conditions (2.4), (6.1). Hence 
providing (6.2) has a non-trivial solution in Q, ( u  =+ 0), the compression term increases 
if y n  is positive, which corresponds to contracting the shield Q uniformly (note that, 
as q5 is a non-constant harmonic function, u = Vq5 cannot vanish everywhere on Q, thus 
showing that the variation of the compression term is strictly positive). 

So the shield increases the stability for a given perturbation T ? ~ ,  but for the shield to 
be able to stabilize an unstable perturbation, we need to show that we can make the 
compression term sufficiently large so as to make 6’E positive. Indeed this seems to be 
the case, but before justifying this somewhat stronger affirmation, we derive some 
important consequences for the relationship between stability and the topology of the 
liquid shape. 

6.1. The stabilizing effect of the shield,for diflerent topologies 
We have shown that the shield has a stabilizing effect on any perturbation 7, for which 
the solution to (6.3) is non-trivial. This is always the case unless 7, satisfies 

(6.7) 

on the entire liquid surface, in which case the compression term is zero independently 
of the position of the shield. Therefore the shapes that can be stabilized by the addition 
of the shield will be those for which (6.7) admits no solution for 7,. Hence we can use 
(6.7) to analyse the stability for a variety of shape topologies and field configurations. 
The analysis is simplified by noting the following simple geometric interpretation of 
(6.7) : consider a small (three-dimensional) magnetic flux tube lying on the liquid 
surface (figure lo), then, since B is tangent to the surface, from V -  B = 0 we must have 
Bdhds = const. where dh is the height and ds is the width of the flux tube. But by 
surface flux conservation, (6.7) implies 7, Bds = const. so that dividing the two we get 

v.7 (Tn 4 = 0 

7, = k d h ,  (6.8) 
where k is constant along the surface field line. It follows that surface deformations 
which leave the field unchanged are those that ‘ follow the field lines neighbouring the 
surface ’. 

We can investigate the existence of such unwelcome disturbances by simple 
topological arguments : 

(i) Two-dimensional shapes For two-dimensional perturbations, condition (6.7) 
implies by simple integration that 7, B is constant. But as 7, must be volume preserving 
it must change sign at some point, so 7, B must vanish on the entire surface. As B is 
analytic, it can only be zero at a finite number of points which implies that no non- 
trivial (analytic) 7, can satisfy the above condition. It follows that all two-dimensional 
shapes can be stabilized for  any two-dimensional smooth (analytic) disturbance. 

(ii) Spherical topologies In this case the surface field can be written as the surface 
gradient of a single-valued potential function: B = V, Q, (since B - n  = 0 on I), The 
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FIGURE 11. The presence of the metal shield has the effect of making 
the magnetic hole more rigid. 

FIGURE 12. Diagram showing a toroidal shape with a poloidal field. 

vector field T, B must therefore have convergent fields lines where @ reaches an isolated 
maximum or a minimum on r (of course, this must occur at at least two points). It 
follows that T, must vanish in an open neighbourhood of these points, otherwise by 
conservation of surface flux (a consequence of null surface divergence) r ,  B would have 
infinite magnitude where the field lines converge. By flux conservation this trivial 
solution must therefore propagate to the entire surface. Hence the shield has a 
stabilizing effect on all spherical shapes. 

Note in particular that the increased flux compression due to the presence of the 
shield has physically the effect of making the 'magnetic hole more rigid', thus 
discouraging the liquid from falling through it (figure 11). 

(iii) Toroidal topologies Toroidal shapes allow some degree of freedom in the 
choice of surface fields. Consequently they provide a richer variety of stability 
behaviour. In fact we will see that perturbations which cannot be stabilized by the 
addition of the shield (i.e. satisfying (6.7)) may be allowed depending on the structure 
of the surface magnetic field lines. This is because this topology does admit surface 
B-fields with no isolated singular points, as @ is allowed to have multiple values. 

For example consider any axisymmetric torus formed by an axisymmetric coil 
arrangement. The field B will therefore lie along the lines of symmetry, so that if e", is 
the surface unit vector and s is the distance parameter in the poloidal direction (figure 
12) then B = B,(s)eA,, where B,(s) is given by the equilibrium equation (1.2). In this 
case, V, - (7, B) becomes 

1 a ( P ( $ ) ~ n  Bs) 
P(S) as 
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FIGURE 13. Assuming a poloidal field on the surface of the torus, it is clear from (6.8) that a 
disturbance leaving the field unaltered in 8, is always possible in case (a) but never in the case (6). 
The shield will therefore have no stabilizing effect on the disturbance in case (a). 

FIGURE 14. The addition of a twist in the poloidal field lines on the torus has a stabilizing effect, 
as the twist destroys any existing solutions to (6.7). 

Hence 7, satisfies V,. (7, B) = 0 only if 

A$) being any function which makes r,(s, q5) volume preserving (i.e. SPA$) d$ = 0). 
Several possibilities therefore arise. 
(a) If B,(s) is everywhere positive, as in the case of a circular-cross section of the first 

example, then such 7, clearly exist (figure 13a). Therefore the shield, although 
stabilizing cross-sectional perturbations, cannot eliminate these toroidally varying 
disturbances. Moreover for tori with convex cross-sections these perturbations give 
#-Em < 0, since the curvature term is negative. If we add the destabilizing pinch effect 
due to surface tension we conclude that these surfaces are generally unstable under 
longitudinal perturbations. 

It should be noted that in practice we may overcome this difficulty by applying a 
strong steady toroidal (longitudinal) field, which, although not providing any levitation 
force, is known to have the effect of damping any fluid motion normal to its direction. 
This would then discourage the onset of longitudinal instabilities in the toroidal liquid 
shape. 

(b) If the cross-sections considered have B,(s) vanishing on some line of symmetry, 
then r ,  will be well defined only iff($) vanishes. Consequently this type of B-field does 
not admit any such perturbation. The shield will therefore have a stabilizing effect on 
all possible disturbances! Shercliff s well-known cruciform cross-sections are an 
example of such ‘ stabilizable’ shapes (figure 13 b). 

(c)  More exotic behaviour appears if we add a longitudinal twist to the levitating 
field by applying a constant longitudinal field component B4 (figure 14). It turns out 
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that this has a stabilizing effect on the shape in case (a) (i.e. where the surface field has 
no singular points) by destroying any existing solutions to (6.7). The component B, can 
be generated by adding an induction coil wound round the torus with a current at the 
same frequency as that in the initial coil. The 'twist' on the magnetic field will then be 
determined by the current intensity in these coils. We may adjust the currents so that 
the field lines 'never join up' after one or several revolutions round the torus (i.e. the 
twist number is irrational; it would of course be very difficult to obtain a rational twist 
number!). Hence all the field lines are the continuation of one single field line. So by 
flux conservation T,  satisfying V,. (7, B) = 0 must have constant sign on r. But this 
cannot exist as it would not be volume preserving. 

So the field twist offers a way of stabilizing surfaces such as the torus in the first 
example. It is worth noting that the stability increases with the intensity of B, (even in 
the absence of the shield), since in this case 

where in the curvature we have written K~ B2 using the principal curvatures C,, C, of 
the axisymmetric torus. In the limit as the torus radius RT+ 00, C,  becomes the cross 
sectional curvature, while C, -r 0. In this limit the curvature term is independent of B+, 
while the compression increases like B;, due to the dependence of SB on B through 
(6.3b). This confirms the idea proposed by Sneyd & Moffatt (1982) that such toroidal 
forms may be stabilized by applying a longitudinal high frequency field. 

6.2. When does the compression term tend to infinity? 
As remarked earlier, for the shield to stabilize a given shape we need to show that the 
compression term increases sufficiently as the space between the shield and the liquid 
surface is reduced. Indeed it seems in general that the compression term increases 
without limit as the shield approaches the liquid surface! For example suppose that r 
is a sphere. If Q, is the potential of SB, then (6.3) is just 

V2p, = 0 in Q,, ( 6 . 9 ~ )  

?Y= M on r, 
an 

Q;'=o on Q. 
an 

(6.9b) 

(6.9 c)  

Without loss of generality we may choose G with radius 1 and the shield Q as being 
a concentric sphere of radius R. In this case we can express the solution Q, as a series 
expansion in spherical harmonics : 

with 

n=l n=-m \ ' 1  
(6.10) 

Substituting (6.10) into the compression term (see (3.11)) and integrating term by term 
we obtain 
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(all cross-terms vanish due to the orthogonality of the spherical harmonics), where the 
I,!?,,, are the harmonic coefficients of Y (note that !P must have vanishing surface 
integral, so Yo,o = 0).  It is clear that if at least one of the harmonic components of Y 
is non-zero then 

,. 

as the distance d = R- 1 between f and Q tends to zero. 
An analogous result to the above is obtained for toroidal shapes. If we consider f 

as being a large torus with circular cross-section, then f can be taken as a circular 
cylinder on which SB is periodic in the longitudinal direction (the period p ,  
corresponding to the perimeter of the torus). The corresponding potential function 
generally has an increase dZQtwt,st (the variation of the total current spiralling round the 
shield) in the longitudinal direction every period pT,  and a constant increase dlr every 
cross-sectional revolution. Both dIQ,,,, and SZ, are constant, which enables us to write 
the general solution to (6.3) as a discrete sum involving Bessel functions of second type. 
A similar expression to the above is obtained, having the same asymptotic behaviour 
for any non-zero Y. 

7. Remarks and conclusions 
The above results can be summarized in the following way. 
(i) The stability properties of equilibrium configurations for liquid shapes are tied to 

condition (6.7): the shape may be made stable by the presence of a surrounding metal 
shield only if the topologies of both the surface magnetic field and of the shape are such 
that no regular perturbation is admitted satisfying (6.7). Physically this means that no 
perturbation can leave the exterior magnetic field unchanged. 

(ii) From a simple geometrical interpretation (6.8) and (6.7) the following remarks 
can be made for various topologies : for two-dimensional configurations in general, all 
shapes can be stabilized by the addition of a shield for any two-dimensional smooth 
(analytic) disturbance. The same turns out to be true for all three-dimensional spherical 
topologies. 

(iii) For the toroidal case,, several situations arise depending on the shape of the 
surface magnetic field, as some surface field topologies seem to allow perturbations 
satisfying (6.7) (figure 13). However if a ‘twist’ B, (figure 14) is added to the magnetic 
field lines, not only are the destabilizing perturbations eliminated, thus making all 
toroidal shapes stabilizable by the addition of the shield, but the overall stability is 
increased as well, even for those configurations that were already stable in the first 
place. 

Besides its stabilizing effect, the shield also has the advantage of preventing the 
escape of magnetic energy, thus increasing the efficiency of the levitation device. 
Another important advantage is that the shield increases the stability without having 
to increase the magnetic field intensity on the liquid surface, and with it the internal 
fluid motion (which would reduce the validity of our analysis). For example, as already 
mentioned, toroidal shapes can be stabilized by applying a strong longitudinal field B4. 
This has the disadvantage of increasing the surface field. The same stability may be 
obtained by placing the shield sufficiently close to the liquid surface. We may then 
choose a levitating current distribution which only gives a weak B, on the liquid 
surface. 

In practice we would like to place the shield as close as possible to the liquid surface. 



Stability of liquid conductors in electromagnetic shaping 25 

However, there is the obvious restriction of the inductors, which have to remain at a 
safe distance from the molten metal. Moreover the levitating current distribution j,s is 
given by 

j ,  = n,  A AB, 

where n, is the normal to the inductor surface S and AB is the jump in the magnetic 
field across S. The order of magnitude ofj, must therefore increase without limit as Q 
approaches Sin order to compensate for the field deformation between the two surfaces 
S and Q. Hence the total power needed to generate the levitating currents, proportional 
to 1,j; d S  therefore tends to infinity. Hence we cannot place the shield just behind the 
surface inductor in an attempt to maximize the stabilizing action of the shield: in 
practice there has to be a trade-off between optimum stability and the power we are 
prepared to inject into the system. 

I would like to thank J. P. Brancher, as well as the referees, for the helpful remarks 
made during the writing of this paper. 

Appendix 
We remind the reader of the following properties we need in these evaluations: 
Let C(x,) be the matrix with components aT$3x;. Then we have 

d</de = r:, (A 1) 

where 7: is the Jacobian matrix with components &-f/axi,. Now let Ye = c-'. Then 
Y, 7 = /, the identity matrix. Hence differentiating and using (A 1): 

and so 

A.l. Evaluation of 6n 
We have n = VY/lVYl where Y ( x )  = 0 is a local representation of r. But 

where Y,(x,) = Y(T ' (x ) )  (the superscript t denotes the transpose), which implies that 
S(V u) = - %' a Y/ax from (A 2), and 

so 

Hence, in component language, 

Sni = - Zi rknk + (nja, rknk) ni 

which with 7, = rknk 
= - ai 7, + 7kai nk + (nit), 7, - rknniai nk) ni 
= - (ai - ninjaj) 7, + rk(ai - ninQi) nk 
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which by definition of d 

= -dir,+rkdink 

and by symmetry of dn 

= -dir,+rkdkni 
Hence 

6n = - V s r , + ( r t - V s ) n  

A.2. Evaluation of 6C 

For simplicity we shall only derive 6C for normal displacements. These deviations are 
not new: for a more general study see Bang-Yen Chen (1984, Chap. 5.4, p. 213). First, 
note that we can rewrite dn, the second fundamental form, in terms of then principal 
directions t ,  t ,  with respective principal curvatures K ~ ,  K~ at a point on I'. Then 

d, ni = K~ ti ti + K ,  ti ti. (A 3) 
It follows that the mean curvature C = K~ + K~ is given by 

C = dknk 

since t , ,  t ,  are unit vectors. The evaluation of 6C is simplified by noting that d,nk = 

6C = &(ak nk) = a@,) nk + ak(6nk) 

if we only consider normal displacements, i.e. r = r ,  n, then, from above, 6n = - dr, 
and so the normal variation is given by, since as above 6i3/ax = -tr'i3/ax, 

6,c= -ak~ia ,nk-akdi~ ,  

. a  
= - ak(rn ni) B j  nk -di d, r ,  -nII"-ddi r, 

2n 

ank . a  
= - ak 7,-- 7, ak nia, nk - di d, r ,  - nz-di 7,. 

an an 

The first and last terms cancel because they sum to (a/an) (dd, rn). Moreover it is easily 
verified that aknQ,nk = dknidjnk so that we are left with 

6,C = -rndkn~dink-didir,.  

The first term is rewritten as (A 3): 

dknjd,nk = K ~ ( f , * f , ) ( t , . f , ) +  K ~ ( f , - t 2 ) ( t 2 * t 2 ) + 2 K 1  K z ( t , * t z ) ( t , * t , )  

= K ; + K ~  

since t , ,  t ,  are mutually orthonormal. Hence, noting that di, di is just the surface 
Laplacian V,Z, we finally have 

6, C = - ( K : + K ~ ) T , - V ~ T , .  

A.3. Evaluation of (2.6) 
Take skin depth into account. Select c' (figure 3) in the skin region, then (as j  = oE if 
we neglect fluid movement) 

(A 4) 
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‘I 
FIGURE 15. Division of 52 into 52, and 52,. 

If c is an adjacent curve running on the liquid surface r then 

j ,  being the surface current density, and 

1 B-n,dS - -[AB.n,dS+-~cB.n,dS. 1 1 
Po 6, Po 

From (A 4) we therefore must have 

which can only be satisfied in the limit as S - t  0 if the 1/S2 coefficient tends to zero like 

A.4. Calculation of (2.6) for  a large torus 

J,B.n,dS = A - d l ,  

where c is any curve running on the toroidal surface r and A is the vector potential: 

48). 

s, 

wherej  is the current density in the current region 52 (i.e. the liquid torus plus the 
current carrying inductor coils). To estimate A at a given point ro, we divide 52 into two 
parts: a local part 52, of fixed length L containing r,, and 52, the rest (figure 15). The 
contribution of 52, to A is finite if L remains finite. If the radius R, of the torus r is 
large compared to its cross-section, for points on the torus far from ro the surface r 
and the inductor coils may be considered as a single wire I carrying the total current 
I,+ Is. Hence the contribution of Q2 is approximately given by the line integral 

By symmetry, only the component of A ,  along the ‘wire’ is non-zero, which can be 
written as 
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where 6’ = 0 is the position of Y, and do is the boundary between Q, and Q,, so that 
do = L/(2RT). This evaluates to 

As we let R, tend to infinity while keeping L fixed, 8, tends to zero, so that the above 
becomes the main contribution to A .  Hence we have 

Ir+Is 8R 
27c L 

I c A . d l  - 2nR,- In 7 - (I ,  + Is)  R, In R,. 
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